Math 522 Exam 9 Solutions

1. Calculate $((\mu \star d) \star(d \star \phi))(10)$.

It would be very messy to solve this problem without using some of our simplifying theorems. Because \star is associative and commutative, we can drop the parentheses and rearrange at will. $\mu \star d \star d \star \phi=\mu \star 1 \star 1 \star d \star \phi=$ $\epsilon \star 1 \star d \star \phi=1 \star \phi \star d=I d \star d$. Now, $(I d \star d)(10)=I d(1) d(10)+I d(2) d(5)+$ $I d(5) d(2)+I d(10) d(1)=1 \times 4+2 \times 2+5 \times 2+10 \times 1=28$.
Or, if you prefer, $I d \star d=I d \star 1 \star 1=\sigma \star 1$, and $(\sigma \star 1)(10)=\sigma(1) 1(10)+$ $\sigma(2) 1(5)+\sigma(5) 1(2)+\sigma(10) 1(1)=1 \times 1+3 \times 1+6 \times 1+18 \times 1=28$.
2. Solve the congruence $7 x^{9,876,543,210,123,456,789} \equiv 9(\bmod 50)$.

HINT: $\operatorname{Mod} 50,3^{1} \equiv 3,3^{2} \equiv 9,3^{3} \equiv 27,3^{4} \equiv 31,3^{5} \equiv 43,3^{6} \equiv 29,3^{7} \equiv 37,3^{8} \equiv$ $11,3^{9} \equiv 33,3^{10} \equiv 49,3^{11} \equiv 47,3^{12} \equiv 41,3^{13} \equiv 23,3^{14} \equiv 19,3^{15} \equiv 7,3^{16} \equiv 21,3^{17} \equiv$ $13,3^{18} \equiv 39,3^{19} \equiv 17,3^{20} \equiv 1$.
BONUS: Find all primitive roots modulo 50.
$\phi(50)=\phi(2) \phi(25)=20$, and the hint shows that 3 belongs to 20 , so 3 is a primitive root. It is not necessary (but perhaps convenient) to arrange the hint into a table of indices.

Number	1	3	7	9	11	13	17	19	21	23	27	29	31	33	37	39	41	43	47	49
Index	20	1	15	2	8	17	19	14	16	13	3	6	4	9	7	18	12	5	11	10

ind $9 \equiv$ ind $\left(7 x^{9,876,543,210,123,456,789}\right) \equiv$ ind $7+9,876,543,210,123,456,789$ ind $x \equiv$ ind $7+9$ ind $x(\bmod 20)$. Hence $2 \equiv 15+9$ ind x, or $7 \equiv 9$ ind $x(\bmod 20)$. We now need to find $9^{-1}(\bmod 20)$, which is actually 9 again. We multiply by 9 on both sides, finding $3 \equiv 63 \equiv 7 \times 9 \equiv(9 \times 9)$ ind $x \equiv$ ind $x(\bmod 20)$. Hence $x=27$ is the unique solution, modulo 50 .

BONUS: The integers in $[1,20]$ relatively prime to 20 are $1,3,7,9,11,13,17,19$ (there are $\phi(20)=8$ of them). We know 3 is a primitive root, so by Cor. 7.1, these powers of 3 are also primitive roots. Namely, 3, 27, 37, 33, 47, 23, 13, 17 are the primitive roots of 50 .
3. High score $=92$, Median score $=65$, Low score $=50$

